Improving Children's Speech Recognition Through Out-of-Domain Data Augmentation
نویسندگان
چکیده
Children’s speech poses challenges to speech recognition due to strong age-dependent anatomical variations and a lack of large, publicly-available corpora. In this paper we explore data augmentation for children’s speech recognition using stochastic feature mapping (SFM) to transform out-of-domain adult data for both GMM-based and DNN-based acoustic models. We performed experiments on the English PF-STAR corpus, augmenting using WSJCAM0 and ABI. Our experimental results indicate that a DNN acoustic model for childrens speech can make use of adult data, and that out-of-domain SFM is more accurate than in-domain SFM.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملImproving DNN-Based Automatic Recognition of Non-native Children's Speech with Adult Speech
Acoustic models for state-of-the-art DNN-based speech recognition systems are typically trained using at least several hundred hours of task-specific training data. However, this amount of training data is not always available for some applications. In this paper, we investigate how to use an adult speech corpus to improve DNN-based automatic speech recognition for non-native children's speech....
متن کاملImproved Regularization Techniques for End-to-End Speech Recognition
Regularization is important for end-to-end speech models, since the models are highly flexible and easy to overfit. Data augmentation and dropout has been important for improving end-to-end models in other domains. However, they are relatively under explored for end-to-end speech models. Therefore, we investigate the effectiveness of both methods for end-to-end trainable, deep speech recognitio...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملImproving Child Speech Disorder Assessment by Incorporating Out-of-Domain Adult Speech
This paper describes the continued development of a system to provide early assessment of speech development issues in children and better triaging to professional services. Whilst corpora of children’s speech are increasingly available, recognition of disordered children’s speech is still a data-scarce task. Transfer learning methods have been shown to be effective at leveraging out-of-domain ...
متن کامل